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1 Factorization of Ideals in Dedekind Domains and Discrete
Valuation Rings

1.1 Unique factorization of fractional ideals in Dedekind domains
If a C A is an ideal, we define a=! = {b € Q(A) : ba C A}.
Lemma 1.1. If A is a Dedekind domain and p is a mazimal ideal, then pp~! = A.

If we can prove unique factorization of fractional ideals into primes in Dedekind do-
mains, then we can get this result for all ideals.

Theorem 1.1. Let A be a Dedekind domain, and let a C Q(A) be a fractional ideal of A.
There exist k > 0, distinct nonzero primes p1,...,Pr, and nonzero integers ri,...,7y € Z
such that a = pi*---p;*. This factorization is unique up to ordering. Moreover, a is an
ideal if and only if all r; > 0.

Proof. Let a C A be a nonzero ideal. Work by induction on m such that there exist
maximal q1,...,¢y, with g1+ g € a. Then m =0 < a = A. Suppose m > 1. Then
there exists a maximal ideal p such that a C p. A lemma from before gives us that p = q,
without loss of generality. Then qi -+ qm—1 C ap~! C A by definition of p~!. By induction
on m, there is a factorization of ap™ = p'---p*. Soa =ad =ap~'p=pl'---pFp. So
we have the factorization.

If a € Q(A) is a fractional ideal, then there is a d € A\ {0} such that fa C A. Then
(d) =pi* - -piF, da=gqi*---q;%, and a = (d)~'. Then da = (p1---p;*)"'qi’ -~ q;*. So we
again have the factorization.

Uniqueness: Let a = pi'---p;* = qi'---q;* with r;,s; € Z. Multiply through so that
all 7,55 > 0 and p;, q; are distinct (those that are left). Now both sides equal some ideal
b C A. Write b = Plt L...Pim. Let t = . t; be minimal among all factorizations with this
b. If t =0, then m =0, and b = A (so we are done). If t > 0, then t,, 2 b, so t,, equals
some £; in any other factorization Q7" --- Qp» of b (by the same lemma from earlier). We
get a contradiction. So the factorization of b is unique, which means the factorization of a
is unique. ]



1.2 Groups of fractional ideals

Corollary 1.1. Let A be a Dedekind domain. Then I(A), the set of fractional ideals of A
s a group under -.

Definition 1.1. P(A) < I(A) is the subgroup of principal fractional ideals. Cl(A) =
I(A)/P(A) is the class group of A.

Lemma 1.2. CI(A) is trivial if and only if A is a PID.

Proof. If C1(A) is trivial, then every fractional ideal is principal, so every ideal is principal.
If Ais a PID, then any a € I(A) can be written as bc™! for ideals b, ¢ of A. Then b = (b)
and ¢ = ¢, so a = (bc™1). O

For a number field K, Ix = I(Ok), Pk = P(Ok). We write Cl = CL(Ok) = Ix/Pk.
Here is a theorem that is beyond the scope of this course.

Theorem 1.2. Clg is finite.

Example 1.1. Let K = Q(v/=5). Then O = Z[v/-5]. Let a = (2,1 ++/=5). Then
Ngjg(2) = 4, and Ngjg(l ++=5) = 6. If a = (a), then a = 2z + (1 + v/=5)y, so
Ngjgla) = 22+ (1 +V=5)y)(2z + (1 — V=5)y) = 4a® + 2zy + 6y*> € (2). We have
Nk gla) | 4,6, since a generates a. So Nk g(a) = £2. But Nk g(a+bv/—=5) = a?+5b% # 2,
since a, b are integers. So a is not principal. In fact, [a] generates Clg = Z/27Z.

Theorem 1.3. A Dedekind domain is a UFD if and only if it is a PID.

Proof. PIDs are UFDs in general. Assume A is a UFD and Dedekind domain. If p C A is
maximal, it is also minimal (since A has Krull dimension < 1). A is a UFD, so p = (f),
where f is irreducible. If a = pi*---p* = wf{*--- f,* where f; is irreducible and p; =

(fi)- O

1.3 Discrete Valuation Rings

Definition 1.2. A discrete valuation ring (or DVR) is a PID with exactly one nonzero
prime ideal.

Lemma 1.3. Let A be PID. The following are equivalent:
1. Ais a DVR.
2. A has a unique nonzero maximal ideal.
3. A has a unique nonzero irreducible element up to multiplication by units.

Definition 1.3. A generator 7 of the maximal ideal of a DVR is called a uniformizer.



The lemma says that this is well-defined, up to units.

Proposition 1.1. Let A be a domain. Then A is a DVR if and only if A is a local Dedekind
domain that is not a field.

Proof. DVRs are PIDs, so the are Dedekind domains. Then DVRs are local. Let A be a
local Dedekind domain which is not a field, and let (0) # p C A be a maximal ideal. If
a C A is an ideal, then unique factorization gives a = p” for some n > 1. Take 7 € p \ p°.
Then p = (7), since () must be a power of p. Then a = p™ = (™). So A is a PID and
hence a DVR. O

Theorem 1.4. If A is a noetherian domain, then A is Dedekind if and only if Ay is a
DVR for all nonzero prime ideals p of A.

Proof. (= ): This follows from the proposition.

(=) Let A" =, Ap € Q(A). Then A C A’, and we want to show that A = A".
If ¢/d € A’, with ¢,d € A\ {0}, then consider the fractional ideal a = {a € A : ac € (d)}.
For each p, ¢/d = r/d, where r € A and s € A\ p. Then sc = rd € (d), so s € a. Then
a Z p for all p maximal, which means that a = A. So ¢/d € A. So A’ = A. O

We will finish the proof next time.
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