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1 Factorization of Ideals in Dedekind Domains and Discrete
Valuation Rings

1.1 Unique factorization of fractional ideals in Dedekind domains

If a ⊆ A is an ideal, we define a−1 = {b ∈ Q(A) : ba ⊆ A}.

Lemma 1.1. If A is a Dedekind domain and p is a maximal ideal, then pp−1 = A.

If we can prove unique factorization of fractional ideals into primes in Dedekind do-
mains, then we can get this result for all ideals.

Theorem 1.1. Let A be a Dedekind domain, and let a ⊆ Q(A) be a fractional ideal of A.
There exist k ≥ 0, distinct nonzero primes p1, . . . , pk, and nonzero integers r1, . . . , rk ∈ Z
such that a = pr11 · · · p

rk
k . This factorization is unique up to ordering. Moreover, a is an

ideal if and only if all ri > 0.

Proof. Let a ⊆ A be a nonzero ideal. Work by induction on m such that there exist
maximal q1, . . . , qm with q1 · · · qm ⊆ a. Then m = 0 ⇐⇒ a = A. Suppose m ≥ 1. Then
there exists a maximal ideal p such that a ⊆ p. A lemma from before gives us that p = qm
without loss of generality. Then q1 · · · qm−1 ⊆ ap−1 ⊆ A by definition of p−1. By induction
on m, there is a factorization of ap−1 = pr11 · · · p

rk
k . So a = aA = ap−1p = pr11 · · · p

rk
k p. So

we have the factorization.
If a ⊆ Q(A) is a fractional ideal, then there is a d ∈ A \ {0} such that fa ⊆ A. Then

(d) = pr11 · · · p
rk
k , da = qs11 · · · q

s`
` , and a = (d)−1. Then da = (p1 · · · prkk )−1qs11 · · · q

sk
k . So we

again have the factorization.
Uniqueness: Let a = pr11 · · · p

rk
k = qs11 · · · q

s`
` with ri, sJ ∈ Z. Multiply through so that

all ri, sj > 0 and pj , qi are distinct (those that are left). Now both sides equal some ideal
b ⊆ A. Write b = P t1

1 · · ·P tm
m . Let t =

∑
i ti be minimal among all factorizations with this

b. If t = 0, then m = 0, and b = A (so we are done). If t > 0, then rm ⊇ b, so rm equals
some Qj in any other factorization Qu1

1 · · ·Qun
n of b (by the same lemma from earlier). We

get a contradiction. So the factorization of b is unique, which means the factorization of a
is unique.
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1.2 Groups of fractional ideals

Corollary 1.1. Let A be a Dedekind domain. Then I(A), the set of fractional ideals of A
is a group under ·.

Definition 1.1. P (A) ≤ I(A) is the subgroup of principal fractional ideals. Cl(A) =
I(A)/P (A) is the class group of A.

Lemma 1.2. Cl(A) is trivial if and only if A is a PID.

Proof. If Cl(A) is trivial, then every fractional ideal is principal, so every ideal is principal.
If A is a PID, then any a ∈ I(A) can be written as bc−1 for ideals b, c of A. Then b = (b)
and c = c, so a = (bc−1).

For a number field K, IK = I(OK), PK = P (OK). We write Cl = CL(OK) = IK/PK .
Here is a theorem that is beyond the scope of this course.

Theorem 1.2. ClK is finite.

Example 1.1. Let K = Q(
√
−5). Then OK = Z[

√
−5]. Let a = (2, 1 +

√
−5). Then

NK/Q(2) = 4, and NK/Q(1 +
√
−5) = 6. If a = (a), then a = 2x + (1 +

√
−5)y, so

NK/Q(a) = (2x + (1 +
√
−5)y)(2x + (1 −

√
−5)y) = 4x2 + 2xy + 6y2 ∈ (2). We have

NK/Q(a) | 4, 6, since a generates a. So NK/Q(a) = ±2. But NK/Q(a+b
√
−5) = a2+5b2 6= 2,

since a, b are integers. So a is not principal. In fact, [a] generates ClK ∼= Z/2Z.

Theorem 1.3. A Dedekind domain is a UFD if and only if it is a PID.

Proof. PIDs are UFDs in general. Assume A is a UFD and Dedekind domain. If p ⊆ A is
maximal, it is also minimal (since A has Krull dimension ≤ 1). A is a UFD, so p = (f),
where f is irreducible. If a = pr11 · · · p

rk
k = uf r11 · · · f

rk
k where fi is irreducible and pi =

(fi).

1.3 Discrete Valuation Rings

Definition 1.2. A discrete valuation ring (or DVR) is a PID with exactly one nonzero
prime ideal.

Lemma 1.3. Let A be PID. The following are equivalent:

1. A is a DVR.

2. A has a unique nonzero maximal ideal.

3. A has a unique nonzero irreducible element up to multiplication by units.

Definition 1.3. A generator π of the maximal ideal of a DVR is called a uniformizer.
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The lemma says that this is well-defined, up to units.

Proposition 1.1. Let A be a domain. Then A is a DVR if and only if A is a local Dedekind
domain that is not a field.

Proof. DVRs are PIDs, so the are Dedekind domains. Then DVRs are local. Let A be a
local Dedekind domain which is not a field, and let (0) 6= p ⊆ A be a maximal ideal. If
a ⊆ A is an ideal, then unique factorization gives a = pn for some n ≥ 1. Take π ∈ p \ p2.
Then p = (π), since (π) must be a power of p. Then a = pn = (πn). So A is a PID and
hence a DVR.

Theorem 1.4. If A is a noetherian domain, then A is Dedekind if and only if Ap is a
DVR for all nonzero prime ideals p of A.

Proof. ( =⇒ ): This follows from the proposition.
( ⇐= ): Let A′ =

⋂
p6=0Ap ⊆ Q(A). Then A ⊆ A′, and we want to show that A = A′.

If c/d ∈ A′, with c, d ∈ A \ {0}, then consider the fractional ideal a = {a ∈ A : ac ∈ (d)}.
For each p, c/d = r/d, where r ∈ A and s ∈ A \ p. Then sc = rd ∈ (d), so s ∈ a. Then
a 6⊆ p for all p maximal, which means that a = A. So c/d ∈ A. So A′ = A.

We will finish the proof next time.
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